Outline: Line Integrals

1. Scalar Line Integrals

Let \mathcal{C} be a curve with parameterization $\vec{x}(t)=(x(t), y(t))$ for $a \leq t \leq b$, and let $f(x, y)$ be a scalar-valued function. Then the integral of f along \mathcal{C} is defined as follows:

$$
\int_{\mathcal{C}} f(x, y) d s=\int_{a}^{b} f(\vec{x}(t))\left\|\vec{x}^{\prime}(t)\right\| d t=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

2. Vector Fields and 1-Forms

A vector field is an assignment of a vector to every point on the plane. That is, a vector field is a function of the form

$$
\vec{F}(x, y)=(P(x, y), Q(x, y))
$$

where $P(x, y)$ and $Q(x, y)$ are scalar-valued functions. The corresponding 1-form is the expression

$$
P(x, y) d x+Q(x, y) d y
$$

3. Vector Line Integrals

Let \mathcal{C} be an oriented curve with parameterization $\vec{x}(t)=(x(t), y(t))$ for $a \leq t \leq b$, and let $\vec{F}(x, y)=(P(x, y), Q(x, y))$ be a vector field. Then the integral of $\overrightarrow{\boldsymbol{F}}$ along \mathcal{C} is defined as follows:

$$
\int_{\mathcal{C}} \vec{F}(x, y) \cdot d \vec{s}=\int_{a}^{b} \vec{F}(\vec{x}(t)) \cdot \vec{x}^{\prime}(t) d t=\int_{a}^{b}\left[P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t)) y^{\prime}(t)\right] d t
$$

Vector line integrals are sometimes written using 1-forms instead of vector fields:

$$
\int_{\mathcal{C}} P(x, y) d x+Q(x, y) d y \quad \text { instead of } \quad \int_{\mathcal{C}} \vec{F}(x, y) \cdot d \vec{s}
$$

The two notations mean exactly the same thing. In particular:

$$
\int_{\mathcal{C}} P(x, y) d x+Q(x, y) d y=\int_{a}^{b}\left[P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t)) y^{\prime}(t)\right] d t
$$

4. The Fundamental Theorem of Calculus for Line Integrals

 If $f(x, y)$ is a two-variable function, its differential is the 1 -form$$
d f=\frac{\partial f}{\partial x}(x, y) d x+\frac{\partial f}{\partial y}(x, y) d y
$$

The fundamental theorem of calculus for line integrals states that

$$
\int_{\mathcal{C}} d f=f(\vec{v})-f(\vec{u})
$$

where \vec{u} is the begin point of the curve \mathcal{C}, and \vec{v} is the end point of \mathcal{C}.
Using vector field notation, this theorem can be written

$$
\int_{\mathcal{C}} \nabla f(x, y) \cdot d \vec{s}=f(\vec{v})-f(\vec{u})
$$

where $\nabla f(x, y)=\left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)$ is the gradient of f. In this form, this theorem is sometimes called the gradient theorem.

5. Green's Theorem

Let \mathcal{C} be a simple, counterclockwise closed curve, let \mathcal{R} be the region inside \mathcal{C}, and let $P(x, y) d x+Q(x, y) d y$ be a 1-form. Then Green's Theorem states that

$$
\int_{\mathcal{C}} P(x, y) d x+Q(x, y) d y=\iint_{\mathcal{R}}\left(\frac{\partial Q}{\partial x}(x, y)-\frac{\partial P}{\partial y}(x, y)\right) d A
$$

where the integral on the right is a double integral.
This theorem is especially useful for evaluating double integrals on the region inside a closed parametric curve. For example, the area inside a closed curve is given by the formula

$$
\text { area }=\iint_{\mathcal{R}} d A=\int_{\mathcal{C}}-y d x=\int_{\mathcal{C}} x d y .
$$

6. Conservative Vector Fields

A vector field $\vec{F}(x, y)=(P(x, y), Q(x, y))$ is called conservative if

$$
\frac{\partial P}{\partial y}(x, y)=\frac{\partial Q}{\partial x}(x, y)
$$

for all x and y. In this case, the corresponding 1-form $P(x, y) d x+Q(x, y) d y$ is said to be closed.

Because mixed partial derivatives are equal, the gradient $\nabla f(x, y)$ of any function $f(x, y)$ is conservative. Conversely, if $\vec{F}(x, y)$ is a conservative vector field, there always exists a function $f(x, y)$ for which $\nabla f(x, y)=\vec{F}(x, y)$.

Similarly, the differential $d f$ of any function $f(x, y)$ is a closed 1-form, and any closed 1 -form is the differential of some function.

Exercises: Line Integrals

1-3 ■ Evaluate the given scalar line integral.

1. $\int_{\mathcal{C}} y d s$, where \mathcal{C} is the curve $\vec{x}(t)=(3 \cos t, 3 \sin t)$ for $0 \leq t \leq \pi / 2$.
2. $\int_{\mathcal{C}} x y d s$, where \mathcal{C} is the line segment between the points $(3,2)$ and $(6,6)$.
3. $\int_{\mathcal{C}}\left(x^{2}+y^{2}\right) d s$, where \mathcal{C} is the polar curve $r=e^{\theta}$ for $0 \leq \theta \leq \pi$.

4-6 Evaluate the given vector line integral.
4. $\int_{\mathcal{C}}(y, 1) \cdot d \vec{s}$, where \mathcal{C} is the curve $\vec{x}(t)=\left(t^{3}-t, t^{2}\right)$ from the point $(0,0)$ to the point $(6,4)$.
5. $\int_{\mathcal{C}} x y d y$, where \mathcal{C} is the portion of the ellipse
$4 x^{2}+9 y^{2}=36$ lying in the first quadrant, oriented clockwise.
6. $\int_{\mathcal{C}} y d x-x d y$, where \mathcal{C} is the portion of the curve $y=1 / x$ from the point $(1,1)$ to the point $(2,1 / 2)$.

7-8 ■ Use the fundamental theorem of calculus for line integrals to evaluate the given integral.
7. $\int_{\mathcal{C}} y e^{x y} d x+x e^{x y} d y$, where \mathcal{C} is a curve from the point $(0,0)$ to the point $(3,2)$.
8. $\int_{\mathcal{C}}(1+\cosh y, x \sinh y) \cdot d \vec{s}$, where \mathcal{C} is a curve from the point $(0,0)$ to the point $(1,1)$.

9-10 ■ Use Green's theorem to evaluate the given line integral.
9. $\int_{\mathcal{C}} x^{3 / 4} e^{x} d x+3 x d y$, where \mathcal{C} is the closed curve shown in the following figure:

10. $\int_{\mathcal{C}}\left(\sqrt{x} \sin x, x^{3}+3 x y^{2}\right) \cdot d \vec{s}$, where \mathcal{C} is the circle $x^{2}+y^{2}=1$, oriented counterclockwise.
11. Use Green's theorem to evaluate $\iint_{\mathcal{R}} y d A$, where \mathcal{R} is the region inside the curve $\vec{x}(t)=\left(t-t^{3}, t^{2}\right)$ for $-1 \leq t \leq 1$.
12. Use Green's theorem to find the area of the region inside the curve $\vec{x}(t)=(\cos t, \sin t \cos t)$ for $-\pi / 2 \leq t \leq \pi / 2$.
13. Is the 1-form

$$
y \cos \left(x^{2} y^{2}\right) d x+x \cos \left(x^{2} y^{2}\right) d y
$$

the differential of some function? Explain.

Answers

1. 9
2. 95
3. $\frac{\left(e^{3 \pi}-1\right) \sqrt{2}}{3}$
4. $\frac{308}{15}$
5. 4
6. $\log (4)$
7. $e^{6}-1$
8. $1+\cosh (1)$
9. 18
10. $\frac{3 \pi}{2}$
11. $\frac{8}{35}$
12. $2 / 3$
13. Yes. It is a closed 1-form, since

$$
\frac{\partial}{\partial y}\left[y \cos \left(x^{2} y^{2}\right)\right]=\cos \left(x^{2} y^{2}\right)-2 x^{2} y^{2} \sin \left(x^{2} y^{2}\right)=\frac{\partial}{\partial x}\left[x \cos \left(x^{2} y^{2}\right)\right]
$$

and hence it is the differential of some function $f(x, y)$.

